fbpx

Courses

COMMISSIONING OF COMBINED CYCLE POWER PLANTS – NOV 2020 (1)

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

COMMISSIONING OF COMBINED CYCLE POWER PLANTS

23 - 27 NOVEMBER 2020 | 5 half-day sessions, 4 hours per session (total 20 hours)

About The Course

This course provides a comprehensive understanding of all the commissioning procedures for combined cycle power plants. The Commissioning Management System of combined cycle power plants is covered in detail as well.  This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report.

 

The course provides also a thorough understanding of all the commissioning requirements for gas turbines, steam turbines and auxiliaries, generator and auxiliaries, electrical equipment, switchgear equipment, switchgear, and transformers. All the stages of the commissioning procedure will be covered in-depth.

 

This includes preparation – planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant, instrumentation, trial run of the equipment, safety and precautions, commissioning of combined cycle power plant systems, Safety Rules Clearance Certificates, procedure for the control and handling of defects, Commissioning Reports, operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test.

 

This course is a MUST for anyone who is involved in the pre-commissioning or commissioning of any combined cycle power plant equipment because it provides detailed pre-commissioning checks and tests and detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant.  In addition, the course provides in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each combined cycle power plant equipment, safety and precautions, Safety Rules Clearance Certificates, Procedures for handling defects, and Commissioning Reports.

Course Fees

Early bird

SGD 3,099 for 5 days

 

Normal price

SGD 3,299 for 5 days

Learning Outcomes

  • Pre-Commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for all Electrical Equipment: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for all electrical equipment
  • Commissioning Procedures, Documents, and Certification of Electrical Equipment: Discover the benefits of the Commissioning Management System of electrical equipment including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, documentation, testing and commissioning schedules, test reports, safety, equipment certification, and commissioning completion report
  • Commissioning Procedures for Transformers: Learn about the commissioning procedures for transformers including functional checks, pre-commissioning tests, commissioning tests, and records.
  • Commissioning Procedures for Switchgear Assemblies: Gain a thorough understanding of all the commissioning procedures for switchgear assemblies including substation commissioning, electrical testing, code requirements, safety rules, grounding and shorting, high power testing, NETA acceptance testing procedures, test values analysis, and commissioning forms
  • Commissioning Procedures for Generator and Auxiliaries: Discover all the commissioning procedures for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and payment of generator
  • Commissioning Procedures and Instructions for Generator Electrical Equipment: Learn about all the commissioning procedures and instructions for generator electrical equipment including switchyard equipment, switchgear, transformers, and motors
  • Code Requirements for Commissioning Electrical Equipment and Systems: Learn about the code requirements for commissioning transformers, switchgear, inductions and synchronous motors, and generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TOPICS COVERED

Commissioning Management System

System Turnover from Construction to Commissioning

Chemical Cleaning of Heat Recovery System

Commissioning of DC Power and UPS System

Feedwater and Condensate

HRSG

Stator Water System

Transformer Pre-Commissioning Tests

Duct Burner Testing

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

ELECTRICAL GENERATORS, EXCITATION SYSTEMS AND GOVERNING SYSTEMS – NOV 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

ELECTRICAL GENERATORS, EXCITATION SYSTEMS AND GOVERNING SYSTEMS

30 NOVEMBER - 04 DECEMBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides a comprehensive understanding of the various types of generators, exciters, automatic voltage regulators (AVR’s), governing systems, and protective systems.  The focus will be on maximizing the efficiency, reliability and longevity of these equipment by providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance.  This course will also cover on protective systems, inspection methods, diagnostic testing, troubleshooting, modern maintenance techniques, refurbishment, rewind and upgrade options, as well as advanced methods for preventing partial discharge and other failures.

 

This course is a MUST for anyone who is involved in the selection, applications or maintenance of generators, exciters, automatic voltage regulators (AVR’s), and protective systems because it covers how the equipment operates and the latest maintenance techniques as well as provides guidelines and rules that ensure the successful operation of the equipment.

 

In addition, the basic design, operating characteristics, specification, selection criteria, advanced fault detection techniques, critical components and all preventive and predictive maintenance methods carried out in order to increase reliability of the equipment and reduce the operation and maintenance cost will also be discussed in this course.

 

In summary, the following information for all types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems will be shared in this course:

 

  • Basic Design
  • Specification
  • Selection Criteria
  • Sizing Calculations
  • Enclosures and Sealing Arrangements
  • Codes and Standards
  • Common Operational Problems
  • Protective Systems
  • All Diagnostics, Troubleshooting, Testing, and Maintenance

Course Fees

Early bird:

SGD 3,099 for 5 days

 

Normal price:

SGD 3,299 for 5 days

Learning Outcomes

  • Equipment Operation: Gain a thorough understanding of the operating characteristics of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Diagnostics and Inspection: Learn in detail all the diagnostic techniques and inspections required of critical components of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Testing: Understand thoroughly all the tests required for the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Electrical Generator Protective Systems: Gain a thorough understanding of all Electrical generator protective systems including: all electrical relays, tripping mechanisms, protective systems for negative phase sequence (unbalance loading), loss of excitation, over fluxing protection (over-voltage and under-frequency), reverse power (generator monitoring), over-speeding, pole slipping/out of step (sudden increase in torque or weakness in excitation), Class A protection, Class B protection
  • Equipment Maintenance and Troubleshooting: Determine all the maintenance and troubleshooting activities required to minimize the downtime and operating cost of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Repair and Refurbishment: Gain a detailed understanding of the various methods used to repair and refurbish generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Rewind and Upgrade Options: Discover all options available to rewind and upgrade the generator rotor and stator to enhance the output and reduce downtime
  • Efficiency, Reliability, and Longevity: Learn the various methods used to maximize the efficiency, reliability, and longevity of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Advanced Methods to Prevent Failure: Gain a thorough understanding of all the methods used to prevent partial discharge, and other failures in generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Sizing: Gain a detailed understanding of all the calculations and sizing techniques used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Design Features: Understand all the design features that improve the efficiency and reliability of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Selection: Learn how to select generators, exciters, automatic voltage regulators (AVR’s), and protective systems by using the performance characteristics and selection criteria that you will learn in this seminar
  • Equipment Enclosures and Sealing Methods: Learn about the various types of enclosures and sealing arrangements used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Commissioning: Understand all the commissioning requirements for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Codes and Standards: Learn all the codes and standards applicable for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Causes and Modes of Failure: Understand causes and modes of failure of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • System Design: Learn all the requirements for designing different types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TESTIMONIALS FROM PAST PARTICIPANTS

“The training is precise and straight to the point with a lot of interactions between the participants and the trainer.” 

 

“The training is informative and trainer has a very good understanding of the topics delivered. It is a MUST ATTEND to anyone who want to deepen  and sharpen their knowledge on generator systems.” 

 

“After attending the course, I now have a clear understanding of the generator, excitation and governing systems.” 

 

“I attended past trainings but this one given more than I could ask for! Will recommend it to my work colleagues.” 

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

THERMAL POWER PLANT PERFORMANCE TESTING – NOV 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

THERMAL POWER PLANT PERFORMANCE TESTING

09 - 13 NOVEMBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides detailed description of all the performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters. The methodology, and code requirements for the performance tests for all thermal power plant equipment will be covered thoroughly in this course. The preparatory work and instrumentation required for each test will be described in detail in this course.  The efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boiler and pulverized coal boiler power plants will be covered in-depth in this course. All the processes, operational and maintenance activities, capital projects, technical options, potential initiatives and incentives to implement upgrades/repairs for increasing the power plant equipment efficiency will also be covered in detail.

 

This course will also provide a thorough explanation of CFB and pulverized coal boiler technology including hydrodynamics, combustion, emissions, design considerations, gas-solid separators, design of CFB and pulverized coal boiler components, management of solid residues, materials, stoichiometric calculations, and model for sulfur capture. The operation, maintenance, testing, and refurbishment options of all the equipment and systems used in CFB and pulverized coal power plants will be covered in detail including, boilers, superheaters, reheaters, turbines, condensers, feedwater heaters, deaerators, pumps, compressors, fans, electric generators, instrumentation and control systems, and governing systems, etc.

 

All the factors which affect CFB and pulverized coal boiler power plant efficiency and emissions will be explained thoroughly. All the methods used to calculate the heat rate of CFB and pulverized coal power plants will be covered in detail. All the areas in CFB and pulverized coal boiler power plants where efficiency loss can occur will be explained. This course will also provide up-dated information in respect to the following methods used to improve CFB boiler and pulverized coal boiler power plant heat rate:

  • Optimizing the Combustion Process and Sootblowing
  • Controlling the Steam Temperature
  • Recovering Moisture from Boiler Flue Gas
  • Performing Steam Turbine Maintenance
  • Lowering Condenser Back Pressure
  • Pre-drying High Moisture Coal and Reducing Stack Temperature

Course Fees

Early bird:

SGD 3,099 for 5 days

 

Normal price:
SGD 3,299 for 5 days

Learning Outcomes

  • Thermal Plant Performance Testing: Gain a thorough understanding of all the performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters
  • Performance Test Methodology and Code Requirements: Understand the methodology, and code requirements for the performance tests of all thermal power plant equipment
  • Performance Test Preparatory Work and Instrumentation: Learn about the preparatory work and instrumentation required for each equipment performance test in a thermal power plant
  • Equipment Efficiency Calculations: Gain a thorough understanding of the efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boilers and pulverized coal boilers power plants
  • Calculating the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn all the methods used to calculate the heat rate of CFB and pulverized coal boiler coal power plants
  • Benefits of Lowering the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the benefits of lowering the heat rate of circulating fluidized-bed boiler coal power plants
  • Methods Used to Improve CFB and Pulverized Coal Boiler Power Plants Heat Rate: Gain a thorough understanding of all the methods used to improve the heat rate of CFB and pulverized boiler coal power plants
  • Processes, Operational and Maintenance Activities in CFB and Pulverized Coal Boiler Power Plants: Discover all the processes, operational and maintenance activities used to improve the heat rate of CFB and pulverized coal power plants
  • Capital Projects Used to Improve the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn about all the capital projects used to improve the heat rate of CFB and pulverized coal power plants
  • Technical Options for Improving the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the technical options used to improve the heat rate of CFB and pulverized coal boiler power plants
  • Potential Initiatives and Incentives to Implement Upgrades/Repairs for Improving the Heat Rate of CFB and Pulverized Coal Bed Boiler Power Plants: Discover all the potential initiatives and incentives to implement upgrades/repairs for improving the heat rate of CFB and pulverized coal power plants
  • Factors Affecting CFB and Pulverized Coal Boiler Power Plants Efficiency and Emissions: Learn about all the factors which affect CFB and pulverized coal boiler power plants efficiency and emissions
  • Areas in CFB and Pulverized Coal Power Plants where Efficiency Loss Can Occur: Discover all the areas in CFB and pulverized coal power plants where efficiency loss can occur
  • Optimize the Operation of CFB and Pulverized Coal Power Plant Equipment and Systems to Improve the Plant Heat Rate: Understand all the techniques and methods used to optimize the operation of CFB and pulverized coal power plant equipment and systems to improve the plant heat rate
  • CFB and Pulverized Coal Power Plant Equipment and Systems: Learn about various types of CFB and pulverized coal power plant equipment and systems including: boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater heaters, coal-handling equipment, transformers, generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TESTIMONIALS FROM PAST PARTICIPANTS

“We highly appreciate the lecturer’s teaching approach. He is very much practical in his teaching style. He surely has the mastery on the subject matter. Really enjoyed the training. Thank you.” – Deputy Engineering Manager, JGC Philippines Inc.

“The trainer has great knowledge on equipment efficiency calculation. He used simple and understandable language to explain all the efficiency calculation for power plant equipment.” – Assistant Manager, Sarawak Energy Berhad

“The course gives clear understanding of thermal power plant testing which will benefit my work and future reference in my thermal power development team on testing performance. I look forward for more course that will benefit my development and my company.” – Mechanical Engineer, Sarawak Energy Berhad

“A very motivating trainer, and always made sure all of his teachings are 100% absorbed by participants.” – Mechanical Engineer, Sarawak Energy Berhad

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

COMMISSIONING OF COMBINED CYCLE POWER PLANTS – NOV 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

COMMISSIONING OF COMBINED CYCLE POWER PLANTS

02 - 06 NOVEMBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides a comprehensive understanding of all the commissioning procedures for combined cycle power plants. The Commissioning Management System of combined cycle power plants is covered in detail as well.  This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report.

 

The course provides also a thorough understanding of all the commissioning requirements for gas turbines, steam turbines and auxiliaries, generator and auxiliaries, electrical equipment, switchgear equipment, switchgear, and transformers. All the stages of the commissioning procedure will be covered in-depth.

 

This includes preparation – planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant, instrumentation, trial run of the equipment, safety and precautions, commissioning of combined cycle power plant systems, Safety Rules Clearance Certificates, procedure for the control and handling of defects, Commissioning Reports, operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test.

 

This course is a MUST for anyone who is involved in the pre-commissioning or commissioning of any combined cycle power plant equipment because it provides detailed pre-commissioning checks and tests and detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant.  In addition, the course provides in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each combined cycle power plant equipment, safety and precautions, Safety Rules Clearance Certificates, Procedures for handling defects, and Commissioning Reports.

Course Fees

Early bird

SGD 3,099 for 5 days

 

Normal price

SGD 3,299 for 5 days

Learning Outcomes

  • Pre-Commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for all Electrical Equipment: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for all electrical equipment
  • Commissioning Procedures, Documents, and Certification of Electrical Equipment: Discover the benefits of the Commissioning Management System of electrical equipment including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, documentation, testing and commissioning schedules, test reports, safety, equipment certification, and commissioning completion report
  • Commissioning Procedures for Transformers: Learn about the commissioning procedures for transformers including functional checks, pre-commissioning tests, commissioning tests, and records.
  • Commissioning Procedures for Switchgear Assemblies: Gain a thorough understanding of all the commissioning procedures for switchgear assemblies including substation commissioning, electrical testing, code requirements, safety rules, grounding and shorting, high power testing, NETA acceptance testing procedures, test values analysis, and commissioning forms
  • Commissioning Procedures for Generator and Auxiliaries: Discover all the commissioning procedures for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and payment of generator
  • Commissioning Procedures and Instructions for Generator Electrical Equipment: Learn about all the commissioning procedures and instructions for generator electrical equipment including switchyard equipment, switchgear, transformers, and motors
  • Code Requirements for Commissioning Electrical Equipment and Systems: Learn about the code requirements for commissioning transformers, switchgear, inductions and synchronous motors, and generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TOPICS COVERED

Commissioning Management System

System Turnover from Construction to Commissioning

Chemical Cleaning of Heat Recovery System

Commissioning of DC Power and UPS System

Feedwater and Condensate

HRSG

Stator Water System

Transformer Pre-Commissioning Tests

Duct Burner Testing

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

ELECTRICAL GENERATORS, EXCITATION SYSTEMS AND GOVERNING SYSTEMS – OCT 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

ELECTRICAL GENERATORS, EXCITATION SYSTEMS AND GOVERNING SYSTEMS

28 SEPTEMBER - 02 OCTOBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides a comprehensive understanding of the various types of generators, exciters, automatic voltage regulators (AVR’s), governing systems, and protective systems.  The focus will be on maximizing the efficiency, reliability and longevity of these equipment by providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance.  This course will also cover on protective systems, inspection methods, diagnostic testing, troubleshooting, modern maintenance techniques, refurbishment, rewind and upgrade options, as well as advanced methods for preventing partial discharge and other failures.

 

This course is a MUST for anyone who is involved in the selection, applications or maintenance of generators, exciters, automatic voltage regulators (AVR’s), and protective systems because it covers how the equipment operates and the latest maintenance techniques as well as provides guidelines and rules that ensure the successful operation of the equipment.

 

In addition, the basic design, operating characteristics, specification, selection criteria, advanced fault detection techniques, critical components and all preventive and predictive maintenance methods carried out in order to increase reliability of the equipment and reduce the operation and maintenance cost will also be discussed in this course.

 

In summary, the following information for all types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems will be shared in this course:

 

  • Basic Design
  • Specification
  • Selection Criteria
  • Sizing Calculations
  • Enclosures and Sealing Arrangements
  • Codes and Standards
  • Common Operational Problems
  • Protective Systems
  • All Diagnostics, Troubleshooting, Testing, and Maintenance

Course Fees

Early bird:

SGD 3,099 for 5 days

 

Normal price:

SGD 3,299 for 5 days

Learning Outcomes

  • Equipment Operation: Gain a thorough understanding of the operating characteristics of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Diagnostics and Inspection: Learn in detail all the diagnostic techniques and inspections required of critical components of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Testing: Understand thoroughly all the tests required for the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Electrical Generator Protective Systems: Gain a thorough understanding of all Electrical generator protective systems including: all electrical relays, tripping mechanisms, protective systems for negative phase sequence (unbalance loading), loss of excitation, over fluxing protection (over-voltage and under-frequency), reverse power (generator monitoring), over-speeding, pole slipping/out of step (sudden increase in torque or weakness in excitation), Class A protection, Class B protection
  • Equipment Maintenance and Troubleshooting: Determine all the maintenance and troubleshooting activities required to minimize the downtime and operating cost of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Repair and Refurbishment: Gain a detailed understanding of the various methods used to repair and refurbish generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Rewind and Upgrade Options: Discover all options available to rewind and upgrade the generator rotor and stator to enhance the output and reduce downtime
  • Efficiency, Reliability, and Longevity: Learn the various methods used to maximize the efficiency, reliability, and longevity of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Advanced Methods to Prevent Failure: Gain a thorough understanding of all the methods used to prevent partial discharge, and other failures in generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Sizing: Gain a detailed understanding of all the calculations and sizing techniques used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Design Features: Understand all the design features that improve the efficiency and reliability of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Selection: Learn how to select generators, exciters, automatic voltage regulators (AVR’s), and protective systems by using the performance characteristics and selection criteria that you will learn in this seminar
  • Equipment Enclosures and Sealing Methods: Learn about the various types of enclosures and sealing arrangements used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Commissioning: Understand all the commissioning requirements for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Codes and Standards: Learn all the codes and standards applicable for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • Equipment Causes and Modes of Failure: Understand causes and modes of failure of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
  • System Design: Learn all the requirements for designing different types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TESTIMONIALS FROM PAST PARTICIPANTS

“This course is very useful for me. I understood more about the generators. The teacher is extremely good in his teaching method and has deep knowledge.” Electrical Engineer, Binh Son Refinery Petrochemical Company Limited

“The trainer has given us a good understanding of the topics. The explanation/reasoning of what happened on electrical equipment’s & the testing were really excellent. The shared practical experiences are very useful for engineers to apply it to their plants.” – Electrical Maintenance Supervisor, Brunei Shell Petroleum

“This course covers very comprehensive topics on generation equipment from principle of engineering, operation and testing. Very recommended to all engineers working related to power plant phase be it projects, engineering or operations & maintenance.” – Senior Electrical Engineer, Sarawak Energy Berhad

“The course really covered the fundamentals of generators theory of operation. This will be beneficial at work since the theory behind the practical work is now understood.” – Maintenance Supervisor, First NatGas Power Corporation

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

UTILITY & COMMUNITY SCALE ENERGY STORAGE (U&CES) SYSTEMS – NOV 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

UTILITY & COMMUNITY SCALE ENERGY STORAGE (U&CES) SYSTEMS

23 - 26 NOVEMBER 2020 | 08:00 - 13:00 (GMT+8) DAILY

About The Course

This course will provide a detailed analysis of Utility and Community Scale Energy Storage (U&CES) Systems. Beginning with an overview of the current available technologies the course will present the elements of U&CES with a focus on the benefits to Utilities as well as the advantages of energy storage for Commercial and Industrial energy users.

 

Issues to be covered include: Storage system design, battery applications, component specification and installation, integration of storage with Renewable Energy (RE) systems, multiple presentations of specific manufacturers of storage systems, O&M issues, available industry resources for ongoing education and the development of individual projects.

Course Fees

Early bird:

SGD 3,499 for 4 days

 

Normal price:

SGD 3,699 for 4 days

Learning Outcomes

This course will allow participants to gain practical and theoretical knowledge about U&CES systems with a focus on real-world applications and current working examples of the various technologies.

 

Participants in this course will upon completion of this course, be able to:

  • Define & explain how Utility and Community Scale Energy Storage (U&CES) operates and the benefits of these systems.
  • Describe and identify components and specifications of a U&CES system
  • Identify the best application and limitations of each system type
  • Calculate U&CES system costs
  • Describe financial benefits of U&CES systems
  • Correctly size a U&CES system
  • Recommend a U&CES system type to meet a Utility administrator’s or business owner’s goals
  • Identify and describe different U&CES system types, their storage capabilities and the systems
  • Explain data analysis, connection scheme, control algorithm and power system study for U&CES
  • Explain and safety issues with U&CES system
  • Define commissioning, operation and maintenance procedures for U&CES systems
  • Demonstrate proper safety procedures when installing a U&CES systems
  • Explain various policy, methodologies and utility-sided business model for implementation of U&CES systems

Who Should Attend

  • Project developers and administrators
  • Investors
  • EPCs
  • Project managers
  • Installers
  • Designers
  • Government policy makers

Expert Course Faculty

Our trainer is the CEO of Great Northern Solar and is a NABCEP certified Photovoltaic Installation Professional. He has been an instructor with the Midwest Renewable Energy Institute since 1993 Teaching advanced Photovoltaic (PV) design and installation and is an IREC Certified Master Trainer (TM) in Photovoltaic Technologies. He was the primary curriculum developer for the MREI Photovoltaic courses at the Institutes inception.

 

A strong advocate for clean energy production, he volunteers with the Midwest Renewable Energy Association, the North American Board of Certified Energy Practitioners (board of directors member 2004-2014, Chair of the Nominations Committee-current) and with the Northern Futures Foundation.

 

The trainer has been designing, specifying, installing and operating Battery based Solar Electric systems (PV) for over 30 years. He has lived “off-Grid” for over 26 years where he runs his business Great Northern Solar.

 

He has been training contractors, administrators and officials in the operation of PV systems including those employing storage for over 26 years.  In the last 5 years he has been investigating and developing trainings for the application of energy storage in commercial and other large applications.

 

With the development of Lithium Ion and other advanced battery technologies he has begun to consult and present trainings in battery design and deployment for the commercial market.

 

In 2016, he developed a hands-on seminar for retrofitting a LiOn storage and energy arbitrage system for a commercial building in Duluth Minnesota.  The Hartley Solar Storage Retrofit Seminar walked participants through the design and implementation of the advanced storage system to provide for building resiliency and peak demand load shaving as well and potential other ancillary services for the Hartley Nature Center and Minnesota Power – the site Utility.

 

This small prototype is beta-testing Energy Arbitrage software that allows the client to choose several operational modes for cost reduction and resiliency.

 

Most recently, he presented “Energy Storage into Renewable Energy Systems” for the North Central Electrical League in the Minneapolis/Saint Paul area of Minnesota.

TESTIMONIALS FROM PAST PARTICIPANTS

“This course provides a good basic understanding of the energy storage business.” – Senior Vice President, Sembcorp Utilities Pte Ltd

“Well thought out course that enables the participants to know what to look out for in the design & implementation process of the U&CES, and the right questions to ask to vendors.” – Executive, Tenaga Nasional Berhad

“PowerEdge never disappoints when it comes to providing training in the Power & Energy industry. Thank you!” – Executive Engineer, Single Buyer Unit

“The ESS course I attended is one of the best short courses I have ever attended. The course is well mixed with theory, practice, and future outlook. The instructors came from the other side of the world, bringing us fresh perspectives, culture, and market experience.” – Senior Manager, Sembcorp Cogen Pte Ltd

“Very comprehensive coverage of the field of ESS, backed up with experiences and case studies.” – Senior Technology Analyst, Sembcorp Industries Ltd 

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants.

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

THERMAL POWER PLANT PERFORMANCE TESTING – OCT 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

THERMAL POWER PLANT PERFORMANCE TESTING

12 - 16 OCTOBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides detailed description of all the performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters. The methodology, and code requirements for the performance tests for all thermal power plant equipment will be covered thoroughly in this course. The preparatory work and instrumentation required for each test will be described in detail in this course.  The efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boiler and pulverized coal boiler power plants will be covered in-depth in this course. All the processes, operational and maintenance activities, capital projects, technical options, potential initiatives and incentives to implement upgrades/repairs for increasing the power plant equipment efficiency will also be covered in detail.

 

This course will also provide a thorough explanation of CFB and pulverized coal boiler technology including hydrodynamics, combustion, emissions, design considerations, gas-solid separators, design of CFB and pulverized coal boiler components, management of solid residues, materials, stoichiometric calculations, and model for sulfur capture. The operation, maintenance, testing, and refurbishment options of all the equipment and systems used in CFB and pulverized coal power plants will be covered in detail including, boilers, superheaters, reheaters, turbines, condensers, feedwater heaters, deaerators, pumps, compressors, fans, electric generators, instrumentation and control systems, and governing systems, etc.

 

All the factors which affect CFB and pulverized coal boiler power plant efficiency and emissions will be explained thoroughly. All the methods used to calculate the heat rate of CFB and pulverized coal power plants will be covered in detail. All the areas in CFB and pulverized coal boiler power plants where efficiency loss can occur will be explained. This course will also provide up-dated information in respect to the following methods used to improve CFB boiler and pulverized coal boiler power plant heat rate:

  • Optimizing the Combustion Process and Sootblowing
  • Controlling the Steam Temperature
  • Recovering Moisture from Boiler Flue Gas
  • Performing Steam Turbine Maintenance
  • Lowering Condenser Back Pressure
  • Pre-drying High Moisture Coal and Reducing Stack Temperature

Course Fees

Early bird:

SGD 3,099 for 5 days

 

Normal price:
SGD 3,299 for 5 days

Learning Outcomes

  • Thermal Plant Performance Testing: Gain a thorough understanding of all the performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters
  • Performance Test Methodology and Code Requirements: Understand the methodology, and code requirements for the performance tests of all thermal power plant equipment
  • Performance Test Preparatory Work and Instrumentation: Learn about the preparatory work and instrumentation required for each equipment performance test in a thermal power plant
  • Equipment Efficiency Calculations: Gain a thorough understanding of the efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boilers and pulverized coal boilers power plants
  • Calculating the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn all the methods used to calculate the heat rate of CFB and pulverized coal boiler coal power plants
  • Benefits of Lowering the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the benefits of lowering the heat rate of circulating fluidized-bed boiler coal power plants
  • Methods Used to Improve CFB and Pulverized Coal Boiler Power Plants Heat Rate: Gain a thorough understanding of all the methods used to improve the heat rate of CFB and pulverized boiler coal power plants
  • Processes, Operational and Maintenance Activities in CFB and Pulverized Coal Boiler Power Plants: Discover all the processes, operational and maintenance activities used to improve the heat rate of CFB and pulverized coal power plants
  • Capital Projects Used to Improve the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn about all the capital projects used to improve the heat rate of CFB and pulverized coal power plants
  • Technical Options for Improving the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the technical options used to improve the heat rate of CFB and pulverized coal boiler power plants
  • Potential Initiatives and Incentives to Implement Upgrades/Repairs for Improving the Heat Rate of CFB and Pulverized Coal Bed Boiler Power Plants: Discover all the potential initiatives and incentives to implement upgrades/repairs for improving the heat rate of CFB and pulverized coal power plants
  • Factors Affecting CFB and Pulverized Coal Boiler Power Plants Efficiency and Emissions: Learn about all the factors which affect CFB and pulverized coal boiler power plants efficiency and emissions
  • Areas in CFB and Pulverized Coal Power Plants where Efficiency Loss Can Occur: Discover all the areas in CFB and pulverized coal power plants where efficiency loss can occur
  • Optimize the Operation of CFB and Pulverized Coal Power Plant Equipment and Systems to Improve the Plant Heat Rate: Understand all the techniques and methods used to optimize the operation of CFB and pulverized coal power plant equipment and systems to improve the plant heat rate
  • CFB and Pulverized Coal Power Plant Equipment and Systems: Learn about various types of CFB and pulverized coal power plant equipment and systems including: boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater heaters, coal-handling equipment, transformers, generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TESTIMONIALS FROM PAST PARTICIPANTS

“We highly appreciate the lecturer’s teaching approach. He is very much practical in his teaching style. He surely has the mastery on the subject matter. Really enjoyed the training. Thank you.” – Deputy Engineering Manager, JGC Philippines Inc.

“The trainer has great knowledge on equipment efficiency calculation. He used simple and understandable language to explain all the efficiency calculation for power plant equipment.” – Assistant Manager, Sarawak Energy Berhad

“The course gives clear understanding of thermal power plant testing which will benefit my work and future reference in my thermal power development team on testing performance. I look forward for more course that will benefit my development and my company.” – Mechanical Engineer, Sarawak Energy Berhad

“A very motivating trainer, and always made sure all of his teachings are 100% absorbed by participants.” – Mechanical Engineer, Sarawak Energy Berhad

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

WATER CHEMISTRY FOR THERMAL POWER STATION PLANT CHEMISTS AND BOILER ENGINEERS – OCT 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

WATER CHEMISTRY FOR THERMAL POWER STATION PLANT CHEMISTS AND BOILER ENGINEERS

19 - 22 OCTOBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This is an advanced chemistry training course for power plant chemists and boiler engineers wishing to expand their knowledge and skills, and to become more effective in their day to day roles dealing with thermal power plant chemistry.

The course will provide ample opportunity for robust technical discussion and expand on advanced concepts in thermal power plant cycle chemistry. The course focuses only on the steam/ water aspects of the thermal power cycle.

This course is a must for all power plant chemists and boiler engineers. It is also beneficial for anyone involved in power plant operation and maintenance because it provides guidelines and rules for improving power plant performance and reliability.

Course Fees

Early bird

SGD 3,000 for 4 days

 

Normal price

SGD 3,200 for 4 days

Learning Outcomes

The following are the learning outcomes of this course:

  • Gain a significant increase in understanding of cycle chemistry in steam power plants and the inter-relationships between plant operation, cycle chemistry and potential failure modes due to corrosion and/or deposition throughout the cycle
  • Gain a thorough understanding of all causes of corrosion in a steam power plant and all the methods used to reduce the corrosion rate in a steam power plant
  • Become better equipped to effectively manage the corrosion and deposition risks in a thermal power plant
  • Learn how to reduce failure rate in boilers and steam power plants and improve plant performance
  • Understand condensate polishing and treatment of condensate return to industrial boilers
  • Discover the causes of boiler water contamination and treatment programs
  • Learn about layup and offline corrosion protection
  • Understand water chemistry limits to prevent steam contamination by carryover
  • Learn about boiler water chemistry guidelines and control of steam chemistry
  • Understand high-purity make-up treatment methods
  • Perform demineralizer calculations
  • Perform system design calculations
  • Gain a thorough understanding of mixed bed polishing and reverse osmosis

Who Should Attend

  • Power Plant Chemists
  • Boiler Engineers
  • Engineers involved in the operation and maintenance of power plants
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals (this course is suitable for individuals who do not have a background in chemical engineering)

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TOPICS TO BE COVERED

Steam Generation Water Chemistry Systems

Condensate Feedwater Chemistry

Boiler Water Chemistry

Steam Chemistry

High-Purity Makeup Water Treatment

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

HEAT RATE OPTIMIZATION OF COAL POWER PLANTS – NOV 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

HEAT RATE OPTIMIZATION OF COAL POWER PLANTS

23 - 27 NOVEMBER 2020 | 08:00 - 12:00 (GMT+8) DAILY

About The Course

This course provides advanced level heat rate optimization methods of coal power plants. This course provides detailed description of all the methods used to improve the heat rate (increase the efficiency) of pulverized coal and circulating fluidized bed coal power plants. All the processes, operational and maintenance activities, capital projects, technical options, potential initiatives and incentives to implement upgrades/repairs for increasing the plant efficiency will be covered in detail.  This course will also provide in-depth explanation of all the equipment and systems used in coal power plants.  This includes, boilers, superheaters, reheaters, turbines, condensers, feedwater heaters, deaerators, pumps, compressors, fans, transformers, electric generators, instrumentation and control systems, and governing systems, etc.

 

All the factors which affect the power plant efficiency and emissions will be explained thoroughly.  All the methods used to calculate the heat rate of the power plant will be covered in detail. All the areas in pulverized coal and circulating fluidized bed power plants where efficiency loss can occur will be explained. This course will also provide up-dated information in respect to the following methods used to improve the power plant heat rate:

  • Optimizing the Combustion Process and Sootblowing
  • Controlling the Steam Temperature
  • Recovering Moisture from Boiler Flue Gas
  • Performing Steam Turbine Maintenance
  • Lowering Condenser Back Pressure
  • Pre-drying High Moisture Coal and Reducing Stack Temperature

Course Fees

Early bird:

SGD 3,099 for 5 days

 

Normal price:

SGD 3,299 for 5 days

Learning Outcomes

  • Calculate the Heat Rate of Coal Power Plants: Learn all the methods used to calculate the heat rate of coal power plants
  • Calculate the Efficiency of Every Equipment in Coal Power Plants: Discover how to calculate the efficiency of every equipment in the power plant
  • Benefits of Lowering the Heat Rate of Coal Power Plants: Understand all the benefits of lowering the heat rate of coal power plants
  • Methods Used to Improve Coal Power Plants Heat Rate: Gain a thorough understanding of all the methods used to improve the heat rate of coal power plants.
  • Processes, Operational and Maintenance Activities: Discover all the processes, operational and maintenance activities used to improve the heat rate of coal power plants
  • Capital Projects Used to Improve the Heat Rate: Learn about all the capital projects used to improve the heat rate of coal power plants
  • Technical Options for Improving the Heat Rate: Understand all the technical options used to improve the heat rate of coal power plants
  • Potential Initiatives and Incentives to Implement Upgrades/Repairs for Improving the Heat Rate: Discover all the potential initiatives and incentives to implement upgrades/repairs for improving the heat rate of coal power plants
  • Factors Affecting Coal Power Plant Efficiency and Emissions: Learn about all the factors which affect coal power plants efficiency and emissions
  • Areas in Pulverized Coal and Circulating Fluidized Bed Power Plants where Efficiency Loss Can Occur: Discover all the areas in pulverized coal and circulating fluidized bed power plants where efficiency loss can occur
  • Optimize the Operation of Coal Power Plant Equipment and Systems to Improve the Plant Heat Rate: Understand all the techniques and methods used to optimize the operation of coal power plant equipment and systems to improve the plant heat rate
  • Coal Power Plant Equipment and Systems: Learn about various coal power plant equipment and systems including: boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater heaters, coal-handling equipment, transformers, generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Expert Course Faculty

Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.

 

While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by him covered in detail the various equipment and systems used in power stations.

 

In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

 

He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York.  Below is a list of the books authored by him;

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Furthermore, he has received the following awards:

  • The first “Excellence in Teaching” award offered by PowerEdge, Singapore, in December 2016
  • The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  • The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  • Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

 

Lastly, he was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

TESTIMONIALS FROM PAST PARTICIPANTS

“The training is very beneficial and helped me to understand the heat rate, even as an Electrical Engineer. I can understand the improvement of heat rate in power plant operation.” – Power Plant General Supervisor, Coral Bay Nickel Corporation

“The course was useful and provides fundamentals for heat rate improvements.” – Vice President (Engineering Projects), Meralco PowerGen Corporation

“As a new technical person, I have learnt a lot about the operation of power plant and it provides me with areas that I can look for when evaluating the performance of power plant.” – Chief Financial Officer, Jimah East Power

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration. 
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

  • Pre-Course Questionnaire (PCQ) to help us focus on your learning objectives
  • Detailed course & reference manual for continuous learning and sharing
  • Practical exercises & case examples to better understand the principles
  • Limited class size to ensure one-to-one interactivity
  • Assessment at the end of the course to help you develop a personal action plan

COAL MINING FUNDAMENTALS – SEPT 2020

VIRTUAL INSTRUCTOR LED TRAINING (VILT)

COAL MINING FUNDAMENTALS

28 - 30 SEPTEMBER 2020 | 09:00 - 13:00 (GMT+8) DAILY

About the Course

The coal industry remains an integral part of the international energy mix and is vital to the developing economies of SE Asia. It is likely to remain so for the foreseeable future, and the business is rapidly changing to meet the respective challenges of domestic and international demand for affordable energy, and a low emissions future. This course covers the industry in detail from exploration through to utilisation, providing real life examples wherever possible, and interactive class-based tuition. The program is designed to have the flexibility to address specific target audience needs and still provide a broad educational experience to those interested in a more general viewpoint.

Course Fees

Early bird

SGD 2,400 for 3 days

 

Normal fees

SGD 2,600 for 3 days

Learning Outcomes

  • Understand the historical development of coal and the peculiarities of the SE Asian scene relative to the international experience
  • Understand the key parameters that make or break a coal project
  • Learn the essential science behind coal
  • Understand the relationship between water and gas in coal and the implications
  • Understand mining methods, and why one type may be more suitable than another
  • Learn the practical aspects of mine management and pit logistics
  • Understand the impact and the character of different layers of minerals in a deposit
  • Grasp the physical constraints that affect drilling, and the pros and cons of each method
  • Comprehend the practicalities of material handling with coal, and the holistic pit to port (mind to harbor) system
  • Learn what greenhouse emissions and a warming world mean for the coal industry
  • Comprehend the differences between resources and reserves and the requirements to move resources to reserves
  • Understand the basic economic drivers behind coal projects
  • Learn how to undertake due diligence on a coal project
  • Participate in practical discussions and exercises that enhance practical understanding

Who Should Attend

The course is generally applicable to anyone who would like to understand more about coal, including mining engineers, geologists, administrators, executives, potentials investors in coal projects, and financial analysts. The course is designed to be particularly accessible to young professionals, and those who may already have a different background and wish to understand more about this important international resource.

Expert Course Faculty

He is a geologist with over 40 years’ experience in the coal mining and energy industries. He has held leadership roles in industry and has worked as a consultant to the Coal Bed Methane (CBM) and coal mining industry for the past 20 years. He has been a Managing Director of a leading directional drilling service and technology supply company, and a Research Leader in coal seam gas associated with a major Australian CRC.

 

He is a Managing Director of CoalBed Energy Consultants which provides project management, technical services, business development, due diligence, and consulting services in coal mining, CBM (CSG), Coal Mine Methane (CMM), drilling, fugitive emissions and related areas. CoalBed counts in its client list all of the major mining companies in Australia, and many CBM players. He and his son have developed popular training courses in Coal Mining Fundamentals, CBM Fundamentals, CBM production and completion, and drilling which have been delivered to a range of clients in Australia and overseas.

 

He has worked in most of the major coal seam gas basins throughout the world, and assisted with technology transfer of advanced directional drilling technology into emerging markets such as China, India, South Africa, Central-Asia and Easter Europe. Recent related experience includes developing projects in Indonesia, Mongolia, Kazakhstan, South America and Southern Africa.

 

He is the author of a number of papers that have been published in a range of journals and proceedings, and was also a co-recipient of the prestigious Stefanko Award for best paper at the 2007 SME Conference in Denver, CO, USA for a paper titled “A Petroleum Industry Approach to Coal Mine Drainage”.

 

He holds a BSc in Geology from the University of Newcastle, an MSc in Geology from the University of New England and an MBA from Deakin University. He is a member of the Geological Society of Australia and the Society of Petroleum Engineers.

TOPICS COVERED

The background to coal

Coal fundamentals: The “essential science”

The mining of coal

The drilling of coal

How is coal used?

Coal in the blast furnace

Coal in the power station

Coal markets and trade flows

Coal shipping and logistics of material handling

Coal resources and reserves

This training course will be conducted as a Virtual Instructor Led Training (VILT). Delegates will receive a confirmation email after successful registration.
Soft copy course materials & Certification of Completion will be provided to registered participants. 

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan

View our Virtual Instructor Led Training (VILT) here.