Electrical Generators & Excitation Systems, Partial Discharge, Diagnostic Testing & Protective Systems

Selection, Applications, Operation, Diagnostic Testing, Troubleshooting, Maintenance, and Refurbishment

1 – 5 SEPTEMBER 2014, KUALA LUMPUR, MALAYSIA

Expert Course Faculty Leader
Philip Kiameh

Topics Covered

Synchronous Generators, Generator Stator and Rotor Construction

Generator Components, Auxiliaries and Excitation

Generator Main Connections, Generator Surveillance and Testing, Advanced Methods for Preventing Partial Discharge, Performance and Operation of Generators

Generator Inspection and Maintenance, Generator Rotor Reliability and Life
ELECTRICAL GENERATORS & EXCITATION SYSTEMS, PARTIAL DISCHARGE, DIAGNOSTIC TESTING & PROTECTIVE SYSTEMS
1 – 5 SEPTEMBER 2014, KUALA LUMPUR, MALAYSIA

Course Overview
This seminar will provide a comprehensive understanding of the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems. This seminar will focus on maximizing the efficiency, reliability, and longevity of this equipment by providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance. The emphasis in this seminar is on inspection methods, diagnostic testing, troubleshooting, modern maintenance techniques, refurbishment, rewind and upgrade options, and advanced methods for preventing partial discharge and other failures.

This seminar is a MUST for anyone who is involved in the selection, applications, or maintenance of generators, exciters, automatic voltage regulators (AVR’s), and protective systems because it covers how this equipment operates, the latest maintenance techniques, and provides guidelines and rules that ensure the successful operation of this equipment. In addition, this seminar will cover in detail the basic design, operating characteristics, specification, selection criteria, advanced fault detection techniques, critical components and all preventive and predictive maintenance methods in order to increase reliability of the equipment and reduce the operation and maintenance cost.

This seminar will provide the following information for all types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems:
- Basic Design
- Specification
- Selection Criteria
- Sizing Calculations
- Enclosures and Sealing Arrangements
- Codes and Standards
- Common Operational Problems
- All Diagnostics, Troubleshooting, Testing, and Maintenance

Course Learning Outcomes
- **Equipment Operation**: Gain a thorough understanding of the operating characteristics of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Diagnostics and Inspection**: Learn in detail all the diagnostic techniques and inspections required of critical components of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Testing**: Understand thoroughly all the tests required for the various types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Maintenance and Troubleshooting**: Determine all the maintenance and troubleshooting activities required to minimize the downtime and operating cost of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Repair and Refurbishment**: Gain a detailed understanding of the various methods used to repair and refurbish generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Rewind and Upgrade Options**: Discover all options available to rewind and upgrade the generator rotor and stator to enhance the output and reduce downtime
- **Efficiency, Reliability, and Longevity**: Learn the various methods used to maximize the efficiency, reliability, and longevity of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Advanced Methods to Prevent Failure**: Gain a thorough understanding of all the methods used to prevent partial discharge, and other failures in generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Sizing**: Gain a detailed understanding of all the calculations and sizing techniques used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems

www.poweredgeasia.com
- **Design Features**: Understand all the design features that improve the efficiency and reliability of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Selection**: Learn how to select generators, exciters, automatic voltage regulators (AVR’s), and protective systems by using the performance characteristics and selection criteria that you will learn in this seminar
- **Equipment Enclosures and Sealing Methods**: Learn about the various types of enclosures and sealing arrangements used for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Commissioning**: Understand all the commissioning requirements for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Codes and Standards**: Learn all the codes and standards applicable for generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **Equipment Causes and Modes of Failure**: Understand causes and modes of failure of generators, exciters, automatic voltage regulators (AVR’s), and protective systems
- **System Design**: Learn all the requirements for designing different types of generators, exciters, automatic voltage regulators (AVR’s), and protective systems

Who Should Attend

- Engineers of all disciplines
- Managers
- Technicians
- Maintenance personnel
- Other technical individuals (this seminar is suitable for individuals who do not have an electrical background)

Your Expert Faculty: Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 23 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as "Excellent" or "Very Good" by the delegates who attended his seminars and lectures.
Prof. Kiameh wrote 5 books for working engineers from which three have been published by McGraw-Hill, New York. Below is a list of the books authored by Prof. Kiameh:

5. Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

Prof. Kiameh has received the following awards:

1. The first "Excellence in Teaching" award offered by the Professional Development Center at University of Toronto (May, 1996).
2. The "Excellence in Teaching Award" in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
3. Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof. Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

Later, Prof. Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by Prof. Kiameh covered in detail the various equipment and systems used in power stations.

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree "with distinction" from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Special Feature

Each delegate will receive a copy of the following materials written by the instructor:

2. Generator Inspection, Maintenance and Refurbishment Manual (this manual covers all the inspection and maintenance activities as well as all protective systems required for generators - 300 pages)
5 Day Course Outline

Day 1 – Synchronous Generators, Generator Stator and Rotor Construction

- Synchronous machines, physical description, pole pitch: electrical degrees, synchronous machine windings, field excitation, rotating rectifier excitation, series excitation, no-load and short-circuit values, torque tests, speed-torque characteristic, excitation of a synchronous machine, machine losses

- Synchronous generators, construction, speed of rotation of a synchronous generator, equivalent circuit of a synchronous generator, power and torque in a synchronous generator, synchronous generator operating alone, parallel operation of ac generators, frequency-power and voltage-reactive power characteristics, synchronous generator ratings, synchronous generator capability curves, short-time operation and service factor

- Generator stator construction, stator windings, stator insulation, forces on stator windings, stator endwinding support structure, generator rotor construction, rotor windings, rotor insulation, retaining rings, rotor endwinding structure

Day 2 – Generator Components, Auxiliaries and Excitation

- Generator components, auxiliaries and excitation, the rotor, rotor windings, rotor end rings, wedges and dampers, sliprings, brushgear and shaft grounding, fans, rotor and threading alignment, vibration, bearings and seals,

- The stator, stator core, core frame, stator windings, end winding support, electrical connections and terminals, stator winding cooling components, hydrogen cooling components, stator casing,

- Cooling systems, hydrogen cooling, hydrogen cooling systems, shaft seals and seal oil systems, thrust-type seal, journal-type seal, stator winding water cooling systems,

- Excitation, AC excitation systems, exciter transient performance, pilot exciter, main exciter, exciter performance testing, pilot exciter protection, brushless excitation systems, rotating armature main exciter

- The voltage regulator, power system stabilizer, characteristics of generator exciter power systems (GEP), generator operation

Day 3 – Generator Main Connections, Generator Surveillance and Testing, Advanced Methods for Preventing Partial Discharge, Performance and Operation of Generators

- Generator main connections, isolated phase bus bar circulatory currents, system description

- Inspection practices and methodology, site preparation, foreign material exclusion, experience and training, safety procedures – electrical clearances, inspection frequency, generator accessibility, inspection tools, inspection forms

- Generator surveillance and testing, generator operational checks (surveillance and monitoring), generator diagnostic testing, insulation resistance and polarization index, dc hipot test, ac tests for stator windings, synchronous machine rotor windings, partial discharge tests, mechanical tests

- Advanced methods for protecting the generator stator bars from partial discharge, causes of partial discharge, controlling partial discharge using antimony-doped tin oxide filler material, advanced methods for Preventing partial discharge in generator stator bars, modern US patents for preventing partial discharge

- Generator systems, condition monitoring, operation limitations, fault conditions

- Dry Seals, Advanced Sealing Mechanisms, and Magnetic Bearings
Day 4 – Generator Inspection and Maintenance, Generator Rotor Reliability and Life Expectancy

- Generator inspection and maintenance, on-load maintenance and monitoring, off-load maintenance, generator testing
- Generator operational problems, and refurbishment options, typical generator operational problems
- Generator rotor reliability and life expectancy, generator rotor refurbishment, generator rotor modifications, upgrades, and uprates

Day 5 – Generator Upgrades and Rewinds, Double Feed Generators, Power Station Electrical Systems and Design Requirements, Power Station Protective Systems, Frequently Asked Questions

- Generator upgrades and rewinds, rewinding for increased reliability, rewinding for increased output or efficiency, stator windings, rotor windings, impact on other components
- Stator windings, slot support system, end winding support, asphalt conversions, emergency situations, complete rewind, partial rewind, repair of bars, stator winding insulation, stator winding quality
- Field rewinds, overall design approach, component design, additional field considerations, field coil slot wedges, retaining rings, collector rings and bore copper, field winding quality, spare rotor
- Other generator equipment and auxiliaries, excitation equipment, removable cartridge brush holders, coolers, control cabinets, babbitted hydrogen seals, generator gas monitoring system and tagging compounds, air gap flux probe, shaft voltage monitor
- Double-feed generators, system configuration, equivalent circuit for the brushless double-fed machine, parameter extraction, generator operation, converter rating, machine control
- Bearings and Lubrication, Types of bearings, ball and roller bearings, thrust bearings, lubrication, viscosity of lubricants, greases, VI improved oils

- Used oil analysis, test description and significance, visual and sensory inspection, chemical and physical tests
- Vibration analysis, resonance, vibration instrumentation, vibration analysis, vibration causes, vibration severity
- Power station electrical systems, and design requirements, system requirements, electrical system description, system performance, unit start-up, synchronization, shutdown and power trip, power plant outages and faults, uninterruptible power supply systems, dc systems
- Power station protective systems, design criteria, generator protection, dc tripping systems
- Frequently asked questions
Courses Available

<table>
<thead>
<tr>
<th>4 Pillars of Transformer Condition</th>
<th>Making IPP & Renewable Energy Projects Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Project Finance for Power</td>
<td>Frameworks Bankable</td>
</tr>
<tr>
<td>Advanced Technical Report Writing & Presentation Skills</td>
<td>Managing Complex Projects for Power and Utilities Professionals</td>
</tr>
<tr>
<td>Advanced Turnaround Shutdown & Outage Management</td>
<td>Medium Voltage & High Voltage Switchgear</td>
</tr>
<tr>
<td>Ancillary Services in Competitive Electricity</td>
<td>Metallurgy for Engineers</td>
</tr>
<tr>
<td>Asset Management for the Power Industry</td>
<td>Mechanical Engineering for Non-Mechanical Engineers</td>
</tr>
<tr>
<td>Best Practice Renewable Energy Capital & Project Management</td>
<td>Mini Hydro Project Analysis</td>
</tr>
<tr>
<td>Biomass Power Generation</td>
<td>MKV Speedtronic Control System</td>
</tr>
<tr>
<td>CFB Combustion for Boiler Operations</td>
<td>MK VI Speedtronic Control System</td>
</tr>
<tr>
<td>Clean Development Mechanism and Carbon Markets</td>
<td>Nuclear Energy Project Planning & Economics</td>
</tr>
<tr>
<td>Coal Contracts</td>
<td>Nuclear Power</td>
</tr>
<tr>
<td>Combined Cycle Power Plants Operation</td>
<td>Offshore Platforms Electrical Systems Design & Illustrations</td>
</tr>
<tr>
<td>Combined Heat & Power (CHP) and Co-Generation Plant Operations</td>
<td>Operations of Coal Fired Power Plants</td>
</tr>
<tr>
<td>Competency Management System for the Power Industry</td>
<td>Power Generation Commissioning, Operations & Maintenance</td>
</tr>
<tr>
<td>Design & Operations of Circulating Fluidized Bed Boiler</td>
<td>Power Generation Operation, Protection & Excitation Control</td>
</tr>
<tr>
<td>Developing & Structuring Public-Private Partnership (PPP) for Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Effective Tender Process Management for Power & Utilities</td>
<td></td>
</tr>
<tr>
<td>Electrical Hazop (eHazop) Studies for the Power Industry</td>
<td></td>
</tr>
<tr>
<td>Electricity Demand-Side Management</td>
<td></td>
</tr>
<tr>
<td>Electricity Industry Design</td>
<td></td>
</tr>
<tr>
<td>Electricity Network Planning</td>
<td></td>
</tr>
<tr>
<td>Electricity Retail Contracts</td>
<td></td>
</tr>
<tr>
<td>Electricity Theft</td>
<td></td>
</tr>
<tr>
<td>Electricity Trading Essentials</td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td></td>
</tr>
<tr>
<td>EPC Contract Management for Power & Utilities</td>
<td></td>
</tr>
<tr>
<td>Essentials of Coal Markets and Trading</td>
<td></td>
</tr>
<tr>
<td>Essentials of Power Trading</td>
<td></td>
</tr>
<tr>
<td>Excitation Systems</td>
<td></td>
</tr>
<tr>
<td>Feed-In Tariffs for PV Systems</td>
<td></td>
</tr>
<tr>
<td>Finance for Non-Finance Professionals in Power & Utilities</td>
<td></td>
</tr>
<tr>
<td>Financial Modelling for Project Finance in Power & Utilities</td>
<td></td>
</tr>
<tr>
<td>Fitness-For-Service AP1 579 & High Energy Piping Life Management</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Geothermal Energy</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Power Generation</td>
<td></td>
</tr>
<tr>
<td>Gas & LNG Contract Negotiation</td>
<td></td>
</tr>
<tr>
<td>Gas Turbine Generator Selection, Operation & Maintenance</td>
<td></td>
</tr>
<tr>
<td>Gas Turbine Hot Gas Paths, Rotor & Failure Analysis</td>
<td></td>
</tr>
<tr>
<td>Gas Turbine Major Inspection & Overhaul</td>
<td></td>
</tr>
<tr>
<td>GE Gas Turbine Operations Simulation Based</td>
<td></td>
</tr>
<tr>
<td>HRSG Design, Operations & Understanding, Controlling of HRSG Damage</td>
<td></td>
</tr>
<tr>
<td>Mechanisms</td>
<td></td>
</tr>
<tr>
<td>HV Substation Design & Construction</td>
<td></td>
</tr>
<tr>
<td>IEC for Utilities</td>
<td></td>
</tr>
<tr>
<td>Integration of Distributed Generation</td>
<td></td>
</tr>
<tr>
<td>Introduction to Carbon Capture & Storage</td>
<td></td>
</tr>
<tr>
<td>Introduction to Clean Coal Technology</td>
<td></td>
</tr>
<tr>
<td>Introduction to Power Systems</td>
<td></td>
</tr>
<tr>
<td>Keeping Electrical Switchgear Safe</td>
<td></td>
</tr>
<tr>
<td>Leadership & Team Dynamics for Power & Utilities</td>
<td></td>
</tr>
<tr>
<td>LNG Fundamentals</td>
<td></td>
</tr>
<tr>
<td>LNG Markets & SPOT Trading</td>
<td></td>
</tr>
<tr>
<td>Maintenance Planning & Scheduling</td>
<td></td>
</tr>
<tr>
<td>www.poweredgeasia.com</td>
<td></td>
</tr>
<tr>
<td>energy institute</td>
<td></td>
</tr>
</tbody>
</table>
Frequently Asked Questions (FAQs)

1. Does PowerEdge have other programmes than those listed?
We have more than 200 programmes that we are capable of running. All we need is for you to contact us and request for the preferred programme and we will able to develop it.

2. Where is PowerEdge based?
Power Edge is headquartered in Singapore but we run our training programmes in different venues around Asia.

3. What does PowerEdge do?
We are a Power & Utilities Training Specialist.

4. Can this course be done in our city?
It absolutely can. Get in touch with us to request for a training programme to be carried out in your city.

5. Can you reduce the price of our preferred course?
While our price has been reduced before it is even launched, we are always happy to help you with further discounts.

6. Can you change the dates of the course?
If you have a special requested date, let us know and we will arrange another session for you.

7. Who are the companies that will be participating?
This varies from a diversity of Power Operators, Regulators, Financiers, to Vendors in the Power & Utilities industry.

8. Where is the venue for the course?
We usually engage a 4 to 5 star hotel meeting room to ensure the comfort of our participants.

9. How many delegates should we expect for each course?
This varies from 15 to 20 participants. Class sizes are kept small to allow trainers to focus better on each participant.

10. What are the different payment modes?
We accept Visa/MasterCard, cheques, bank transfers and cash on site.

11. Is accommodation included when I sign up for a course?
Accommodation is not included in the course fee but we are always happy to advise on available accommodations.

12. Can I get a cheaper accommodation through PowerEdge?
We will be pleased to help you negotiate a better rate with hotels.

13. Is lunch provided during the course?
We provide lunch and 2 tea breaks every day during our training programmes.

14. Are the training materials included once I have signed up for a course?
Yes, training and course materials are included in the course fee.

15. Will there be a certificate for the course?
Yes, there will be a certificate of participation upon completion of a course.

16. Who are PowerEdge trainers?
They are expert consultants and practitioners with many years of experience in the subject matter that they deliver on.

17. Are PowerEdge trainers competent?
We have received numerous favourable feedbacks on our trainers from past participants.

18. Can PowerEdge assist with Visa travel applications?
We can assist in advising you on the relevant procedure(s) and embassies/consulates that provide Visa for travel purposes.

19. Can we purchase training materials without attending a course?
Unfortunately this option is not available as training materials are specially developed for courses.

20. Can course content be tweaked to cater to our needs?
Of course! Just let us know your request and we will get the trainer to assist in carrying it out.
CANCELLATIONS & SUBSTITUTIONS
You may substitute delegates at any time. POWEREDGE PTE LTD does not provide refunds for cancellations. For cancellations received in writing more than seven (7) days prior to the training course you will receive a 100% credit to be used at another POWEREDGE PTE LTD training course for up to one year from the date of issuance. In the event that POWEREDGE PTE LTD postpones an event, delegate payments at the postponement date will be credited towards the rescheduled event. For cancellations received seven (7) days or less prior to an event (including day 7), no credits will be issued. In the event that POWEREDGE PTE LTD cancels an event, delegate payments at the date of cancellation will be credited to a future POWEREDGE PTE LTD event. This credit will be available for up to one year from the date of issuance. In the event that POWEREDGE PTE LTD postpones an event, delegate payments at the postponement date will be credited towards the rescheduled date. If the delegate is unable to attend the rescheduled event, the delegate will receive a 100% credit.

PAYMENT POLICY
Payment is due in full at the time of registration. Full payment is mandatory for event attendance. I agree to PowerEdge Pte Ltd. payment terms.

PAYMENT METHODS

1. Cheque/Bank Draft
 Make Payable to PowerEdge Pte Ltd.
2. By Telegraphic Transfer
 Please quote AE1 with the remittance advise
 Account Name: PowerEdge Pte Ltd.
 Swift Code: OCBCSGSG

REGISTRATION FORM

<table>
<thead>
<tr>
<th></th>
<th>NORMAL PRICE</th>
<th>Early Bird SAVE SGD 200 Ends 30 Jul 2014</th>
<th>GROUP OF 3 or More</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Day Programme</td>
<td>SGD 4,900 Per Participant</td>
<td>SGD 4,700 Per Participant</td>
<td>SGD 3,900 Per Participant</td>
</tr>
</tbody>
</table>

ATTENDEE DETAILS

Name... Job title ...
Tel...................................... Department .. Email ...

Name... Job title ...
Tel...................................... Department .. Email ...

Name... Job title ...
Tel...................................... Department .. Email ...

COMPANY DETAILS

Organisation name ... Industry ...
Address ..
Postcode.. Country...
Tel ... Fax ..

You may also be interested in...

- Keeping Electrical Switchgear Safe
- Introduction to Power Systems
- Excitation Systems
- Fundamentals of Power Generation

On Site Training

Can’t make it for the course?
We’ll make the course come to you!!

Simply let us know your preferred time and dates and we will meet you at your schedule and venue.

With a host of highly trained experts, we will be happy to customize your programme with your needs 100% fulfilled.

Contact us today at
info@poweredgeasia.com

(65) 6741 9927

www.poweredgeasia.com

ELECTRICAL GENERATORS & EXCITATION SYSTEMS, PARTIAL DISCHARGE, DIAGNOSTIC TESTING & PROTECTIVE SYSTEMS
1 – 5 SEPTEMBER 2014, KUALA LUMPUR, MALAYSIA

ATTENDEE DETAILS

'The 65 Chulia Street OCBC Centre, Singapore 049513
- 253386-001 Swift Code: OCBCSGSG
- Bank Address: 65 Chulia Street OCBC Centre, Singapore 049513
- All bank charges and payment in Singapore dollars (SGD) to be borne by payer. Please ensure that PowerEdge Pte Ltd receive the full invoiced amount.

PAYMENT POLICY
Payment is due in full at the time of registration. Full payment is mandatory for event attendance. I agree to PowerEdge Pte Ltd. payment terms.

CANCELLATIONS & SUBSTITUTIONS
You may substitute delegates at any time. POWEREDGE PTE LTD does not provide refunds for cancellations. For cancellations received in writing more than seven (7) days prior to the training course you will receive a 100% credit to be used at another POWEREDGE PTE LTD training course for up to one year from the date of issuance. In the event that POWEREDGE PTE LTD postpones an event, delegate payments at the postponement date will be credited towards the rescheduled event. For cancellations received seven (7) days or less prior to an event (including day 7), no credits will be issued. In the event that POWEREDGE PTE LTD cancels an event, delegate payments at the date of cancellation will be credited to a future POWEREDGE PTE LTD event. This credit will be available for up to one year from the date of issuance. In the event that POWEREDGE PTE LTD postpones an event, delegate payments at the postponement date will be credited towards the rescheduled date. If the delegate is unable to attend the rescheduled event, the delegate will receive a 100% credit.

www.poweredgeasia.com

APPROVED TRAINING PROVIDER