ULTRA SUPERCRITICAL STEAM POWER PLANTS

Design, Selection, Applications, Operation, Maintenance, Performance Monitoring, Power Augmentation, Emission Control Methods, Carbon Capture Technology, Economics, Profit Optimization, Revenue and Life Cycle Cost Analysis

7 – 8 DECEMBER 2017, KUALA LUMPUR, MALAYSIA

Introduction

This seminar will cover all aspects of ultra supercritical steam power plants and advanced ultra supercritical power plants.  These plants have achieved a net electrical efficiency of 50%.  This efficiency is significantly higher than the efficiency of conventional power plants which is around 33%.  This indicates that ultra supercritical power plants burn 50% less fuel than conventional power plants to produce the same amount of power.  The ultra supercritical power plants burn coal and biomass.  The environmental emissions of these plants are negligible.  Some ultra supercritical power plants employ carbon capture technology. This makes them more environmentally friendly than any other type of power plants.  They also have higher reliability and lower capital, operation and maintenance cost than conventional power plants.  Large number of ultra supercritical power plants are being built around the world today. China will be installing more than 100,000 MW of ultra supercritical power plants and advanced ultra supercritical power plants during this decade.  Several countries around the world have embarked on a program to replace their conventional coal power plants with ultra supercritical power plants due to their high efficiency, and reliability and low capital, operation and maintenance cost.  Ultra supercritical power plants provide significant economical and environmental advantage over any other type of conventional power plants.

This seminar will cover in detail all the components of ultra supercritical steam power plants including steam turbines, boilers, furnace, burners, steam generators, reheaters, superheaters, feedwater heaters, valves, carbon capture equipment, instrumentation, control systems, fuel handling systems and generators.  This seminar will also cover the design, selection considerations, operation, common problems and solutions, maintenance, pay-back period, and economics of ultra supercritical and advanced ultra supercritical power plants in detail.  This seminar will provide in-depth coverage of the emission control methods, carbon capture technology, reliability, economics, monitoring and governing systems of ultra supercritical and advanced ultra supercritical power plants.  This seminar will cover up-dated information in respect to all the significant improvements that have been made to these power generating plants during the last decade.

Seminar Outcomes

  • Ultra Supercritical Power Plant Equipment: Learn about various ultra supercritical power plant equipment including: steam turbines, furnace, burners, boilers, economizers, superheaters, reheaters, valves, emission control equipment, governing systems, deaerators, feed water heaters and auxiliaries.
  • Ultra Supercritical Power Plants Economics: Examine the advantages, applications, performance and economics of ultra supercritical power plants and advanced ultra supercritical power generating plants.
  • Ultra Supercritical Power Plant Maintenance: Learn all common problems and solutions of ultra supercritical power plants and all maintenance activities required for ultra supercritical power plants and advanced ultra supercritical power generating plants to minimize their operating cost and maximize their efficiency, reliability, and longevity.
  • Ultra Supercritical Power Plant Environmental Emissions: Learn about the monitoring and control of environmental emissions from ultra supercritical and advanced ultra supercritical power plants
  • Ultra Supercritical Power Plant Instrumentation and Control Systems: Learn about the latest instrumentation and control systems of ultra supercritical power plants and advanced ultra supercritical power generating plants.
  • Ultra Supercritical Power Plant Reliability and Testing: Increase your knowledge of ultra supercritical and advanced ultra supercritical power plant predictive and preventive maintenance, reliability and testing.
  • Ultra Supercritical Power Plant Design, Selection and Applications: Gain a detailed understanding of the design, selection considerations and applications of ultra supercritical power plants and advanced ultra supercritical power generating plants.
  • Ultra Supercritical Power Plant Profitability: Learn about the reliability, life cycle cost, profitability, refurbishment, and life extension methods for all types of ultra supercritical power plants and advanced ultra supercritical power generating plants

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Training Methodology

The instructor relies on a highly interactive training method to enhance the learning process.  This method ensures that all the delegates gain a complete understanding of all the topics covered.  The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization.

Course Faculty - Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 23 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.  He also has more than 30 years of practical engineering experience with Ontario Power Generation (formerly, Ontario Hydro – the largest electric utility in North America).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

Later, Prof Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by Prof Kiameh covered in detail the various equipment and systems used in power stations.

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Prof Kiameh wrote 5 books for working engineers from which three have been published by McGraw-Hill, New York.  Below is a list of the books authored by Prof Kiameh:

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

TOPICS COVERED

Ultra Supercritical Power Plants Benefits

Design and Configuration

Turbines and Auxiliaries Operation

Fuels

Instrumentation and Control Systems

Governing Systems

Capture and Storage Technology

Turbine Material and Coatings

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan