Archive for December, 2016

GEOTHERMAL STEAMFIELD DESIGN

GEOTHERMAL STEAMFIELD DESIGN

22nd to 26th May 2016, Lake Taupo, New Zealand

About The Course

A five day introduction to geothermal steamfield design run in the heart of New Zealand’s Geothermal zone.

The course will cover the process and detailed design of the geothermal above ground systems from the production wells trough to the power plant or direct heat user. And from the plant to reinjection.

Learning Outcomes

Understanding the characteristics of, and/or design skills for:

  • Geothermal reservoirs and fluids
  • Principles of power generation
  • Key components in steamfield systems to and from power plants.
  • Hazards and risks
  • The HAZOP process
  • Over pressure protection
  • Two phase and slug flow.
  • Steamfield layout and pipe route selection
  • Steam quality
  • Instrumentation
  • Separators,
  • Vent and discharge silencer design,
  • Piping design- Design codes- Autopipe – Drawing standards- Civil Design – Seismic considerations.
  • Subsidence
  • Chemistry considerations and scaling prevention

Who Should Attend

Engineering students and professionals new to geothermal

Geothermal professions wishing to gain more knowledge and skills in steamfield design

Course Faculty - Kevin Koorey, William Radford, Stephen Katipa, Andrew Bloomer

Training Facilities

The training will be provided at MB Century’s Wairakei complex.  Here the students will be able to see many aspects of geothermal engineering being undertaken.

Training lectures will take place in MB Century’s dedicated training room and practical work will be completed on computer workstations in the design office.

Students will have access to standards online and MB Century’s library.

Field Trips

The course will include 1 field trip.

MB Century’ facilities are located a short drive from all but one on New Zealand’s power stations. The company has good relationships with the station operators and will be able to obtain access to the power plants and steam fields.

The field trip will include general power plant and steamfield inspection as well as detailed study of pipelines and equipment related to design lectures.

If timing permits the students may visit a pipeline construction site. This will give an insight to the pipeline construction process and how the specifications and drawings are used.  Students will also visit MB Century’s workshops to see the off site fabrication steps.

This training course has a limited attendance for up to 20 participants only. Sessions commence at 9am on all days, with short intervals at 10.30am and 3.30pm respectively. Refreshments will be provided in the short intervals. Lunch will be provided at 12:30pm for 1 hour. Sessions will end at 5pm on all days.

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan

CIRCULATING FLUIDIZED BED BOILERS

CIRCULATING FLUIDIZED BED BOILERS

30 – 31 MARCH 2017, SINGAPORE

About The Course

This seminar will provide a comprehensive understanding of various types of circulating fluidized bed (CFB) boilers. All the components of CFB boilers including furnace, cyclones, economizers, superheaters, reheaters, ammonia injection systems, electrostatic precipitators, polishing dry scrubbers, fuel and sorbent feeding systems, bottom ash handling and extraction systems will be covered in detail.  The design,  selection considerations, operation, maintenance,  diagnostic testing,  troubleshooting, refurbishment, pay-back period,  and economics as well as, emission limits, reliability, monitoring and control systems of CFB boilers will also be covered thoroughly.  This seminar will focus on maximizing the efficiency, common problems and solutions, reliability, and longevity of CFB boilers by providing an understanding of the characteristics, selection criteria, common problems, and repair techniques, preventive and predictive maintenance. All the common problems encountered in CFB Boilers will be discussed in detail.  This includes thermally induced failures, anchor system induced failures, water walls tube failures, NMEJ damages, clinker formation, refractory damages, APH tube cho ck-up.  Solutions will be presented to each problem.

Several studies have confirmed that CFB boilers are the best method for power generation. This is due to their fuel flexibility, and lowest electricity cost among all types of boilers.  This technology is in great demand due to various other advantages such as lower emissions as compared to other types of boilers and has a carbon footprint well below the norms laid down by the World Bank emission requirements. This seminar is a MUST for anyone who is involved in the selection, applications, or maintenance of circulating fluidized bed boilers, because it covers how this equipment operates, the latest maintenance techniques, and provides guidelines and rules that ensure succe ssful operation of CFB boilers. This seminar will also provide up-dated information in respect to all the significant improvements that have been made to this equipment during the last two decades.

Learning Outcomes

  • Circulating Fluidized Bed Boiler Advantages: Gain a thorough understanding of the advantages of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers Components and Systems: Learn about all components and subsystems of the various types of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers Applications, Performance and Economics: Examine the applications, performance and economics of Circulating Fluidized Bed Boilers.
  • Circulating Fluidized Bed Boiler Equipment: Learn about various equipment of circulating fluidized bed boilers including: furnaces, cyclones, economizers, superheaters, reheaters, ammonia injection systems, electrostatic precipitators, polishing dry scrubbers, fuel and sorbent feeding systems, bottom ash handling and extraction systems and materials.
  • Circulating Fluidized Bed Boilers Maintenance: Learn all the maintenance activities required for circulating fluidized bed boilers, to minimize their operating cost and maximize their efficiency, reliability, and longevity.
  • Circulating Fluidized Bed Boilers Environmental Emissions: Learn about the monitoring and control of environmental emissions from circulating fluidized boilers.
  • Circulating Fluidized Bed Boilers Instrumentation and Control Systems: Learn about the latest instrumentation and control systems of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers, Reliability and Testing: Increase your knowledge of predictive and preventive maintenance, reliability and testing of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers Selection and Applications: Gain a detailed understanding of the selection considerations and applications of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers Reliability, Refurbishment, and Life Extension Methods: Learn about the reliability, life cycle cost, profitability, refurbishment, and life extension methods for all types of circulating fluidized bed boilers.
  • Circulating Fluidized Bed Boilers Commissioning: Understand all the commissioning requirements of circulating fluidized bed boiler.
  • Circulating Fluidized Bed Boilers Codes and Standards: Learn all the codes and standards applicable for circulating fluidized bed boilers.

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Course Faculty - Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 23 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at th eir Chalk River and Whiteshell Nuclear Research Laboratories.  He also has more than 30 years of practical engineering experience with Ontario Po wer Generation (formerly, Ontario Hydro – the largest electric utility in North America).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities inclu ded designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

REAL CASE STUDIES FROM

  • 5MWp Italy – Module claim – 100% Electroluminescence – micro cracks
  • 40MWp Israel – 100% Infrared – Hot Spot analysis, soiling
  • 4 MWp Germany – Technical Design – roof top, shading analysis
  • 64 MWp Bulgaria – Module claim – Potential Induced Degradation analysis
  • 130 MWp Chile – Technical design c-Si fixed tilted – desert area
  • 9 MWp India – Technical design (c-Si fixed tilted and tracking, thin film fixed tilted)
  • 140 MWp Philippines – Design review
This training course has a limited attendance for up to 20 participants only. Sessions commence at 9am on all days, with short intervals at 10.30am and 3.30pm respectively. Refreshments will be provided in the short intervals. Lunch will be provided at 12:30pm for 1 hour. Sessions will end at 5pm on all days.

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan

THERMAL POWER PLANT PERFORMANCE TESTING

THERMAL POWER PLANT PERFORMANCE TESTING

26 – 28 APRIL 2017, SINGAPORE

About The Course

This seminar provides detailed description of the all performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters.  The methodology, and code requirements for the performance tests for all thermal power plant equipment will be covered thoroughly in this seminar.  The preparatory work and instrumentation required for each test will be described in detail in this seminar.  The efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boiler and pulverized coal boiler power plants will be covered in-depth in this seminar.  All the processes, operational and maintenance activities, capital projects, technical options, potential initiatives and incentives to implement upgrades/repairs for increasing the power plant equipment efficiency will also be covered in detail.  This seminar will also provide a thorough explanation of CFB and pulverized coal boiler technology including hydrodynamics, combustion, emissions, design considerations, gas-solid separators, design of CFB and pulverized coal boiler components, management of solid residues, materials, stoichiometric calculations, and model for sulfur capture. The operation, maintenance, testing, and refurbishment options of all the equipment and systems used in CFB and pulverized coal power plants will be covered in detail including, boilers, superheaters, reheaters, turbines, condensers, feedwater heaters, deaerators, pumps, compressors, fans, electric generators, instrumentation and control systems, and governing systems, etc.   All the factors which affect CFB and pulverized coal boiler power plant efficiency and emissions will be explained thoroughly.  All the methods used to calculate the heat rate of CFB and pulverized coal power plants will be covered in detail. All the areas in CFB and pulverized coal boiler power plants where efficiency loss can occur will be explained. This seminar will also provide up-dated information in respect to the following methods used to improve CFB boiler and pulverized coal boiler power plant heat rate:

  • Optimizing the Combustion Process and Sootblowing
  • Controlling the Steam Temperature
  • Recovering Moisture from Boiler Flue Gas
  • Performing Steam Turbine Maintenance
  • Lowering Condenser Back Pressure
  • Pre-drying High Moisture Coal and Reducing Stack Temperature

Learning Outcomes

  • Thermal Plant Performance Testing: Gain a thorough understanding of all the performance testing methods for all thermal power plant equipment including boilers, turbines, condensers, pumps, fans, deaerators, and feedwater heaters.
  • Performance Test Methodology and Code Requirements: Understand the methodology, and code requirements for the performance tests of all thermal power plant equipment
  • Performance Test Preparatory Work and Instrumentation: Learn about the preparatory work and instrumentation required for each equipment performance test in a thermal power plant
  • Equipment Efficiency Calculations: Gain a thorough understanding of the efficiency calculations for all the equipment used in circulating fluidized-bed (CFB) boilers and pulverized coal boilers power plants
  • Calculating the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn all the methods used to calculate the heat rate of CFB and pulverized coal boiler coal power plants
  • Benefits of Lowering the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the benefits of lowering the heat rate of circulating fluidized-bed boiler coal power plants
  • Methods Used to Improve CFB and Pulverized Coal Boiler Power Plants Heat Rate: Gain a thorough understanding of all the methods used to improve the heat rate of CFB and pulverized boiler coal power plants
  • Processes, Operational and Maintenance Activities in CFB and Pulverized Coal Boiler Power Plants: Discover all the processes, operational and maintenance activities used to improve the heat rate of CFB and pulverized coal power plants
  • Capital Projects Used to Improve the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Learn about all the capital projects used to improve the heat rate of CFB and pulverized coal power plants
  • Technical Options for Improving the Heat Rate of CFB and Pulverized Coal Boiler Power Plants: Understand all the technical options used to improve the heat rate of CFB and pulverized coal boiler power plants
  • Potential Initiatives and Incentives to Implement Upgrades/Repairs for Improving the Heat Rate of CFB and Pulverized Coal Bed Boiler Power Plants: Discover all the potential initiatives and incentives to implement upgrades/repairs for improving the heat rate of CFB and pulverized coal power plants
  • Factors Affecting CFB and Pulverized Coal Boiler Power Plants Efficiency and Emissions: Learn about all the factors which affect CFB and pulverized coal boiler power plants efficiency and emissions
  • Areas in CFB and Pulverized Coal Power Plants where Efficiency Loss Can Occur: Discover all the areas in CFB and pulverized coal power plants where efficiency loss can occur
  • Optimize the Operation of CFB and Pulverized Coal Power Plant Equipment and Systems to Improve the Plant Heat Rate: Understand all the techniques and methods used to optimize the operation of CFB and pulverized coal power plant equipment and systems to improve the plant heat rate
  • CFB and Pulverized Coal Power Plant Equipment and Systems: Learn about various types of CFB and pulverized coal power plant equipment and systems including: boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Course Faculty - Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 23 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.  He also has more than 30 years of practical engineering experience with Ontario Power Generation (formerly, Ontario Hydro – the largest electric utility in North America).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

Later, Prof Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by Prof Kiameh covered in detail the various equipment and systems used in power stations.

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Each delegate will receive a copy of the following materials written by the instructor:

“POWER GENERATION HANDBOOK” second edition published by McGraw-Hill in 2012 (800 pages)

Excerpt of the relevant chapters from the “POWER PLANT EQUIPMENT OPERATION AND MAINTENANCE GUIDE” published by                McGraw-Hill in 2012 (800 pages)

THERMAL POWER PLANT PERFORMANCE TESTING MANUAL (includes practical information about all the performance testing methods for all thermal power plant equipment – 300 pages)

This training course has a limited attendance for up to 20 participants only. Sessions commence at 9am on all days, with short intervals at 10.30am and 3.30pm respectively. Refreshments will be provided in the short intervals. Lunch will be provided at 12:30pm for 1 hour. Sessions will end at 5pm on all days.

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan

COMMISSIONING OF ELECTRICAL EQUIPMENT

COMMISSIONING OF ELECTRICAL EQUIPMENT

17 – 19 MAY 2017, KUALA LUMPUR

About The Course

This seminar provides a comprehensive understanding of all the commissioning and start-up activities of all electrical equipment including transformers, switchgear, induction and synchronous motors, generators and auxiliaries. All commissioning activities are covered in detail in this seminar.  This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, documentation, testing and commissioning schedules, test reports, safety, certification, and plant completion report. The seminar provides also a thorough understanding of all the commissioning requirements for transformers, switchgear, induction and synchronous motors and, generator and auxiliaries including its switchgear equipment, switchgear, and transformers. All the stages of the commissioning procedure are covered in-depth in this seminar.  This includes preparation – planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures for every type of transformers, switchgear, induction and synchronous motors, and generators and auxiliary systems, instrumentation, trial run of the equipment, safety and precautions, commissioning of electrical systems, Safety Rules Clearance Certificates, procedure for the control and handling of defects, Commissioning Reports.

This seminar is a MUST for anyone who is involved in the pre-commissioning or commissioning of any electrical equipment because it provides detailed pre-commissioning checks and tests and detailed tests and commissioning procedures for every electrical equipment.  In addition, the seminar provides in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each electrical equipment, safety and precautions, Safety Rules Clearance Certificates, Procedures for handling defects, and Commissioning Reports.

Learning Outcomes

  • Pre-Commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for all Electrical Equipment: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for all electrical equipment
  • Commissioning Procedures, Documents, and Certification of Electrical Equipment: Discover the benefits of the Commissioning Management System of electrical equipment including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, documentation, testing and commissioning schedules, test reports, safety, equipment certification, and commissioning completion report
  • Commissioning Procedures for Transformers: Learn about the commissioning procedures for transformers including functional checks, pre-commissioning tests, commissioning tests, and records.
  • Commissioning Procedures for Switchgear Assemblies: Gain a thorough understanding of all the commissioning procedures for switchgear assemblies including substation commissioning, electrical testing, code requirements, safety rules, grounding and shorting, high power testing, NETA acceptance testing procedures, test values analysis, and commissioning forms
  • Commissioning Procedures for Generator and Auxiliaries: Discover all the commissioning procedures for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and payment of generator
  • Commissioning Procedures and Instructions for Generator Electrical Equipment: Learn about all the commissioning procedures and instructions for generator electrical equipment including switchyard equipment, switchgear, transformers, and motors
  • Code Requirements for Commissioning Electrical Equipment and Systems: Learn about the code requirements for commissioning transformers, switchgear, inductions and synchronous motors, and generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Course Faculty - Philip Kiameh

Philip Kiameh

Has more than 32 years of practical engineering experience with with Ontario Power Generation and as an Engineering Supervisor and Training Manager, has conduct courses and seminars, to more than 4,000 working engineers and professionals who consistently ranked him as “Excellent” or “Very Good”. Philip has also wrote 5 books for working engineers from which three have been published by McGraw-Hill, New York.

Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 25 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

Prof Kiameh wrote 5 books for working engineers from which three have been published by McGraw-Hill, New York. Below is a list of the books authored by Prof Kiameh:

 

1- Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.

2- Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.

3- Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012.

4- Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).

5- Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

 

Prof. Kiameh has received the following awards:

  1. The first “Excellence in Teaching” award offered by Poweredge Pte Ltd Training Center, Singapore, December 2016
  2. The first “Excellence in Teaching” award offered by the Professional Development Center at University of Toronto (May, 1996).
  3. The “Excellence in Teaching Award” in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East).
  4. Awarded graduation “With Distinction” from Dalhousie University when completed Bachelor of Engineering degree (1983).
  5. Entrance Scholarship to University of Ottawa (1984).
  6. Natural Science and Engineering Research Counsel (NSERC) scholarship towards Graduate studies – Master of Applied Science in Engineering (1984 – 1985).

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. He also has more than 32 years of practical engineering experience with Ontario Power Generation (OPG – formerly, Ontario Hydro – the largest electric utility in North America). Prof. Kiameh retired from OPG in November 2016.

 

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

 

Later, Prof Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by Prof Kiameh covered in detail the various equipment and systems used in power stations.

 

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Each delegate will receive a copy of the following materials written by the instructor:

  1. “ELECTRICAL EQUIPMENT HANDBOOK” published by McGraw-Hill in 2003 (600 pages)
  1. ELECTRICAL EQUIPMENT COMMISSIONING MANUAL (includes practical information about all pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for all electrical equipment – 400 pages)
This training course has a limited attendance for up to 20 participants only. Sessions commence at 9am on all days, with short intervals at 10.30am and 3.30pm respectively. Refreshments will be provided in the short intervals. Lunch will be provided at 12:30pm for 1 hour. Sessions will end at 5pm on all days.

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan

COMMISSIONING AND START-UP ACTIVITIES OF COAL POWER PLANTS

COMMISSIONING AND START-UP ACTIVITIES OF COAL POWER PLANTS

22 – 24 MAY 2017, SINGAPORE

About The Course

This seminar provides a comprehensive understanding of all the commissioning and start-up activities of coal power plants. The Commissioning Management System of coal power plants is covered in detail in this seminar.  This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report. The seminar provides also a thorough understanding of all the commissioning requirements for boiler and auxiliaries, turbines and auxiliaries, generator and auxiliaries, electrical equipment, switchgear equipment, switchgear, and transformers. All the stages of the commissioning procedure are covered in-depth in this seminar.  This includes preparation – planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component in a coal power plant, instrumentation, trial run of the equipment, safety and precautions, commissioning of coal power plant systems, Safety Rules Clearance Certificates, procedure for the control and handling of defects, Commissioning Reports.

This seminar is a MUST for anyone who is involved in the pre-commissioning or commissioning of any coal power plant equipment because it provides detailed pre-commissioning checks and tests and detailed tests and commissioning procedures and instructions for every component in a coal power plant.  In addition, the seminar provides in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each coal power plant equipment, safety and precautions, Safety Rules Clearance Certificates, Procedures for handling defects, and Commissioning Reports.

Learning Outcomes

  • Pre-Commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for Every Equipment in Coal Power Plants: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for every equipment in coal power plants
  • Commissioning Management System of Coal Power Plants: Discover the benefits of the Commissioning Management System of coal power plants including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report
  • Commissioning Procedures and Instructions for Boiler and Auxiliaries in Coal Power Plants: Learn about the commissioning procedures and instructions for boiler and auxiliaries including all commissioning activities, typical commissioning schedule, hydraulic test and wet preservation, air and gas tightness test, trial run of equipment, electronic precipitators, fuel oil system, preparation for first light up, alkali boil – out, acid cleaning and passivation, thermal flow test of economizer, water walls, and superheater, valves, steam boiling, safety valve setting, and soot blowers.
  • Commissioning Procedures and Instructions for Turbine and Auxiliaries: Gain a thorough understanding of all the commissioning procedures and instructions for turbine and auxiliaries including acid cleaning of oil pipelines, lubrication and governing system (oil flushing and hydraulic testing), jacking oil system, governing system, regenerative system, barring gear, vacuum tightness test, first rolling of turbine and data logging
  • Commissioning Procedures and Instructions for Generator and Auxiliaries: Discover all the commissioning procedures and instructions for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and payment of generator
  • Commissioning Procedures and Instructions for Electrical Equipment: Learn about all the commissioning procedures and instructions for electrical equipment including switchyard equipment, switchgear, transformers, and motors
  • Coal Power Plant Equipment and Systems: Learn about various coal power plant equipment and systems including: boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater heaters, coal-handling equipment, transformers, generators and auxiliaries

Who Should Attend

  • Engineers of all disciplines
  • Managers
  • Technicians
  • Maintenance personnel
  • Other technical individuals

Course Faculty - Philip Kiameh

Philip Kiameh, M.A.Sc., B.Eng., D.Eng., P.Eng. (Canada) has been a teacher at University of Toronto and Dalhousie University, Canada for more than 23 years. In addition, Prof Kiameh has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. Prof Kiameh has been consistently ranked as “Excellent” or “Very Good” by the delegates who attended his seminars and lectures.

Prof. Kiameh performed research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories.  He also has more than 30 years of practical engineering experience with Ontario Power Generation (formerly, Ontario Hydro – the largest electric utility in North America).

While working at Ontario Hydro, Prof. Kiameh acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time that Prof Kiameh worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment.

Later, Prof Kiameh worked as the manager of a section dedicated to providing training for the staff at the power stations.  The training provided by Prof Kiameh covered in detail the various equipment and systems used in power stations.

Professor Philip Kiameh was awarded his Bachelor of Engineering Degree “with distinction” from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada.

Prof Kiameh wrote 5 books for working engineers from which three have been published by McGraw-Hill, New York.  Below is a list of the books authored by Prof Kiameh:

  • Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011.
  • Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003.
  • Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January2012.
  • Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999).
  • Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999).

Each delegate will receive a copy of the following materials written by the instructor:

  1. “POWER GENERATION HANDBOOK” second edition published by McGraw-Hill in 2012 (800 pages)
  2. Excerpt of the relevant chapters from the “POWER PLANT EQUIPMENT OPERATION AND MAINTENANCE GUIDE” published by                McGraw-Hill in 2012 (800 pages)
  3. COAL POWER PLANT COMMISSIONING MANUAL (includes practical information about all pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component and system in coal power plants – 300 pages)

Unique Features with powerEDGE Training

• Pre-Course Questionnaire to help us focus on your learning objectives
• Detailed Course & Reference Manual for Continuous Learning and Sharing
• Practical Exercises & Case Examples to better understand the principles
• Limited class size to ensure One-to-One Interactivity
• Assessment at the end of the course to help you develop a Personal Action Plan